
 1 Craig’n’Dave

PROGRAMMING PEDAGOGY

The Craig’n’Dave approach to teaching programming is revolutionary. Not because it is a new pedagogy, but
because it is the first set of resources to truly unify the proven pedagogies for teaching programming
effectively. Wrapped into one scheme of learning for teaching and learning the fundamentals of programming
in Python and C#, our resources are deeply rooted in these methodologies:

 Barak Rosenshine’s principles

Introducing new material in small steps, asking questions, providing models of code and guiding
student practice with progressive, logical learning. Checking understanding with an emphasis on
teacher-student review, oral feedback and obtaining a high success rate with points-based challenges.
Independent practice is central to these resources where students learn programming for themselves.

 Sue Sentence’s PRIMM model

Predicting, running, investigating, making and modifying programs as a practical approach to learning
and studying code has been adopted and streamlined to “T.I.M.E.” in these resources, because
becoming proficient at programming takes time and that acronym just makes more sense!

 Carsten Schulte’s block model of program comprehension

Comprehending how code works by identifying key programming terminology, recognising structures
and syntax, describing the purpose of algorithms, and considering alternative approaches. We have
distilled Schulte’s work on the duality of structure and function with atoms, blocks, relations, and macro
structures in code to something secondary students can understand. Essentially studying program
source code and asking structured questions about it.

 Dale Parson’s code sorting

Supporting weaker programmers by providing them with all the code they need to create a working
program but jumbling the statements up. Creating a working program becomes a card sorting exercise.
Scaffolding learning, reducing the comprehension required and enabling a trial and error approach.

 Alan O’Donohoe’s stepped challenges

Providing students with the desired output instead of the input. Algorithms can be created in many
ways. Encouraging students to adopt paired programming techniques to discuss and justify their
approaches with each other before learning from other pairs. Using differentiation by outcome to
uncover deeper theoretical conversations about the merits of the different approaches taken.

 2 Craig’n’Dave

 Richard Pawson and the functional programming paradigm

Independent routines are as critical as sensible variables names and comments for creating well
structured, modular programs. All programmers should start by learning to make subroutines from the
very beginning of the course. Understanding the necessity for reusable components and parameter
passing, not as an advanced topic, but one that is essential to the structure of all programs.

 William Lau’s little book of algorithms

Building fluency in programming by giving students many different and differentiated challenges.
Recognising that repetition reduces the cognitive load by committing fundamental concepts of
programming and keywords to long term memory. Working on small, standard algorithms that
repeatedly demand sequence, selection and iteration creates more confident programmers.

 Craig and Dave’s design by doing

The traditional software engineer understands the system life cycle. Analyse the problem and design a
solution before you begin to write code. While essential in many historical contexts of programming,
rapid and iterative design practices today negate the need for this approach. Instead students learn
best by writing real programs. Benefitting from instant feedback modern compilers and run-time
environments provide.

Programming taught from the front of the class by a teacher only benefits at best a third of the class.
Some can already progress further and some already need additional support. Allowing students to
learn independently at their own pace and choosing their own challenges allows greater flexibility for
the teacher to stretch and support individual students.

