
TIME for programming

 1 Craig’n’Dave

AIMS

Craig’n’Dave programming resources contain over 118 programs, including over 30 sample programs to try

and investigate, 60 comprehension questions and over 80 differentiated problems to explore and solve.

The aim of these resources is not to cover every theoretical aspect of the specification, but instead to provide

students with an independent self-study guide to learning the fundamentals of programming to become

proficient at the basics.

Once students have mastered the fundamentals, they can then apply this knowledge to other areas of the

specification. The algorithms for searching, sorting, optimisation and higher-order data structures are covered

as practical activities in Craig’n’Dave theory resources.

PEDAGOGY

The Craig’n’Dave approach to teaching programming is revolutionary. Not because it is a new pedagogy, but

because it is the first set of resources to truly unify the proven pedagogies for teaching programming

effectively. Wrapped into one scheme of learning for teaching and learning the fundamentals of programming

in Python and C#, our resources are deeply rooted in these methodologies:

• Barak Rosenshine’s principles

Introducing new material in small steps, asking questions, providing models of code and guiding
student practice with progressive, logical learning. Checking understanding with an emphasis on
teacher-student review, oral feedback and obtaining a high success rate with points-based challenges.
Independent practice is central to these resources where students learn programming for themselves.

• Sue Sentence’s PRIMM model

Predicting, running, investigating, making and modifying programs as a practical approach to learning
and studying code has been adopted and streamlined to “T.I.M.E.” in these resources, because
becoming proficient at programming takes time and that acronym just makes more sense!

• Carsten Schulte’s block model of program comprehension

Comprehending how code works by identifying key programming terminology, recognising structures
and syntax, describing the purpose of algorithms, and considering alternative approaches. We have
distilled Schulte’s work on the duality of structure and function with atoms, blocks, relations, and macro
structures in code to something secondary students can understand. Essentially studying program
source code and asking structured questions about it.

TIME for programming

 2 Craig’n’Dave

• Dale Parson’s code sorting

Supporting weaker programmers by providing them with all the code they need to create a working
program but jumbling the statements up. Creating a working program becomes a card sorting exercise.
Scaffolding learning, reducing the comprehension required and enabling a trial and error approach.

• Alan O’Donohoe’s stepped challenges

Providing students with the desired output instead of the input. Algorithms can be created in many
ways. Encouraging students to adopt paired programming techniques to discuss and justify their
approaches with each other before learning from other pairs. Using differentiation by outcome to
uncover deeper theoretical conversations about the merits of the different approaches taken.

• Richard Pawson and the functional programming paradigm

Independent routines are as critical as sensible variables names and comments for creating well
structured, modular programs. All programmers should start by learning to make subroutines from the
very beginning of the course. Understanding the necessity for reusable components and parameter
passing, not as an advanced topic, but one that is essential to the structure of all programs.

• William Lau’s little book of algorithms

Building fluency in programming by giving students many different and differentiated challenges.
Recognising that repetition reduces the cognitive load by committing fundamental concepts of
programming and keywords to long term memory. Working on small, standard algorithms that
repeatedly demand sequence, selection and iteration creates more confident programmers.

• Craig and Dave’s design by doing

The traditional software engineer understands the system life cycle. Analyse the problem and design a
solution before you begin to write code. While essential in many historical contexts of programming,
rapid and iterative design practices today negate the need for this approach. Instead students learn
best by writing real programs. Benefitting from instant feedback modern compilers and run-time
environments provide.

Programming taught from the front of the class by a teacher only benefits at best a third of the class.
Some can already progress further and some already need additional support. Allowing students to
learn independently at their own pace and choosing their own challenges allows greater flexibility for
the teacher to stretch and support individual students.

TIME for programming

 3 Craig’n’Dave

A SELF-STUDY APPROACH TO LEARNING

The intention with these resources is that students make progress independently. New concepts are

introduced through practical activities by engaging with sample code. Open-ended problems are sufficiently

differentiated with a points system to enable all learners to make progress independently at their level. There

is no need for a teacher to stand at the front of the class and teach the keywords and concepts in each

objective in a traditional way. Students should make progress through the resources on their own, at their

own pace. The role of the teacher is to maintain that pace, provide individual interventions when students are

stuck, review completed objectives and track progress.

Using these resources, students that are absent from class are not disadvantaged and can even continue their

work at home. If a question is too difficult to answer, or a problem is too difficult to solve these can be left to

be discussed with the teacher. The student can still move on to the next objective or problem.

FUNCTIONS FIRST

The use of comments and sensible variable names is expected from students from the outset. It therefore

seems odd not to also introduce structured programming using subroutines from the start too.

This does undoubtably mean the initial small programs students write become unnecessarily complex, but

good habits introduced early are not so easily forgotten.

Although avoiding input and output within a function is desirable, for simplicity this is sometimes used. It is

also regularly seen in exam mark schemes.

PRIOR KNOWLEDGE

Craig’n’Dave resources assume no prior knowledge, so they are suitable for all learners regardless of their

programming experience. Students that have studied a text-based language at Key Stage 3 and/or GCSE will

no doubt find the objectives familiar, although it is less likely they have adopted a functions first approach.

The Python resources are written with GCSE in mind, with C# being more suitable for A level. It is extremely

unlikely that a GCSE student will complete every problem presented in these resources due to the volume of

work and because of the differentiated approach. At A level it is suggested students use the same resources in

an unfamiliar language, perhaps undertaking some of the problems they did not solve at GCSE.

.

TIME for programming

 4 Craig’n’Dave

NAMING CONVENTIONS

Although experienced programmers use different naming conventions for different purposes within a

program, such as PascalCase, camelCase, snake_case and kebab-case, Craig’n’Dave resources use PascalCase

throughout for consistency.

With PascalCase, each letter of a new word in an identifier is uppercase.

BREAKS AND OPTIMAL SOLUTIONS

Although commands exist in many languages to break out of iterations or jump to new sequences, these are

not considered good practice for creating structured code. Therefore break, goto and equivalent commands

are never used.

Many programs can be written more elegantly with modern functions and frameworks. However, this is an

introduction to programming that also prepares students for the algorithms they will see in exams. Therefore,

logical instead of optimal code is often used. E.g. using .sort() in answer to a question about sorting algorithms

gains no marks!

OLD AND NEW APPROACHES

It is recognised that different exam boards exemplify slightly different keywords and approaches that students

could be using when coding. An example is operator overload concatenation or string formatting.

Sol = 299792458

OUTPUT("The speed of light is " + Sol + "m/s") older approach and less performant

Could also be written like this:

Sol = 299792458

OUTPUT("The speed of light is {0} m/s",Sol) contemporary approach and more performant

The Craig’n’Dave approach is to use a coding style that primarily matches exam board expectations but with

more modern approaches being a consideration too. These are often not easy decisions to make when there

are many possible ways to write a program! We introduce students to both operator overloading

concatenation (in objective 1) and string formatting (in objective 3).

TIME for programming

 5 Craig’n’Dave

KEY TERMINOLOGY

“The syntax error was because of a missing string qualifier before the operator in the statement that

concatenates the two variables.”

Students become far better programmers if they understand what statements like this mean. In teaching we

are encouraged to consider reading age and simplifying language for comprehension. With programming, by

having a commanding vocabulary of the words associated with code, not only does it enable students to

understand other programmers and articulate their approaches, but it also helps to understand new

concepts. For example, if you know that an operator can add two integer variables, then understanding

overloading operators becomes easier too.

Throughout the resources each new term is explained and summarised.

10 OBJECTIVES

Students are introduced sequentially to each new programming construct. We call these stages “objectives”

so that the language of learning is familiar.

Each objective builds-on and uses the keywords only introduced in the current and previous objectives to

ensure a smooth and gradual learning transition between the objectives for students.

With a functions first approach, inputs are introduced much later than you might expect in favour of

structured programming, arguments, and parameters.

Objectives:

1. Learn how to write structured programs.

2. Learn how to use selection.

3. Learn how to use number data types.

4. Learn how to use string data types.

5. Learn how to use counter-controlled iterations.

6. Learn how to use condition-controlled iterations.

7. Learn how to handle user inputs.

8. Learn how to use arrays and lists.

9. Learn how to use serial files.

10. Learn how to master the basics.

Objective 10 is an ever-increasing set of problems with a new one being released periodically.

Students will probably have studied most of these concepts at Key Stage 3, but these resources will not be too

easy for them! The level of rigour is higher than that expected at Key Stage 3, especially with a functions first

approach and validation of inputs. Repeating known concepts and consolidating knowledge firmly is extremely

helpful. Even if students used these resources at GCSE, at A level they should attempt them again from

objective 1 using a different language. E.g. Python at GCSE and C# at A level. Understanding the similarities

and differences between different procedural languages is beneficial to learners wanting to study Computer

Science beyond school.

TIME for programming

 6 Craig’n’Dave

4 STAGES IN EACH OBJECTIVE

Each objective has four stages for students to complete.

T - Try

I - Investigate

M - Make

E - Evaluate

Craig’n’Dave call this their “TIME” approach to programming. It is based on the PRIMM model proposed by

Sue Sentence.

WORKBOOKS

Each objective is presented in a PowerPoint student workbook.

Activities for the students are written in the notes section of each slide.

Using PowerPoint enables the teacher to project slides if that is useful and output them in a variety of

formats. They also work well with learning platforms, e.g. Google Classroom.

Predict what a

program will do.

Type the code and

give it a try.

TRY

Comprehend the code.

Modify the code.

Debug code.

INVESTIGATE

Design an algorithm.

Code the solution.

MAKE
Test the code.

Reflect on the

approach.

Refine the code.

E M I T

EVALUATE

TIME for programming

 7 Craig’n’Dave

Try stage
Students look at a coded solution and predict what the output will be. Students type in the code to see if they

are correct. This approach aims to simulate how self-taught programmers in the 1980s used code listings in

magazines and programming manuals to learn to code. Not starting from a blank screen is less daunting for

students, provides models and guides student practice.

Investigate stage
Students learn how the sample programs work, understanding the new commands introduced. A set of small

tasks instruct students to modify the sample programs they have been given. At the end of the stage

keywords and learning points are summarised as a handy reference. The syntax of related additional

commands is also presented that were not needed in the sample programs but could be useful to students

when writing their own programs. These also include all the commands listed in examination board

specifications.

A set of progressive comprehension questions also provide students with an opportunity to consider what

terms mean, what commands or blocks of code achieve, how they work and why they are used. A deeper

knowledge of syntax and programming constructs allows students to adapt to new commands more easily.

This is based on a simplified student-friendly version of the block model of program comprehension proposed

by Carsten Schulte.

ITEM

Programming terminology and keywords.

STRUCTURE

Syntax of lines and blocks of code.

PURPOSE

What the item or structure achieves,
returns, or outputs.

REASON

The reason why an item or structure is
used.

RELATION

How items or structures relate to each
other. The wider implication for the
program or computer system.

APPROACH

How a section of code can be modified to
achieve a greater purpose.

ITEM

STRUCTURE

PURPOSE

REASON

RELATION

APPROACH

TIME for programming

 8 Craig’n’Dave

Program comprehension questions

ITEM Programming terminology and

keywords. Delimiter, qualifier,

identifier, literal, operator,

variable, constant, reserved

word etc.

Q: In the command print("hello world") what is hello world

known as?

A: String.

Q: In the command print("hello world") identify the string.

A: hello world.

STRUCTURE Identifying a block of code,

syntax of an item or providing an

example of a line of code.

Q: What character is used to identify (or qualify) the start and

end of a string?

A: double quote (sometimes a single quote).

PURPOSE What the item or structure

achieves, returns or outputs.

Q: What does the command print("hello world") do?

A: Prints the words hello world to the screen.

REASON Why an item or structure is

used.

Q: Explain why the " character must be used.

A: Without a string qualifier the compiler will assume hello is

a variable, generating a syntax error.

RELATION

How items or structures relate

to each other and the wider

implication for the program or

computer system.

Q: What are the advantages and disadvantages of using the

command print("hello world") instead of using: txt = "hello

world" : print(txt)

A: There are less FDE cycles used but the string cannot be

used later with other commands because it is not stored in

memory.

Q: What is the implication of changing the order of the

commands to:

print(txt) : txt = "hello world“

A: Whatever is currently stored in txt will be output or an

error may occur.

APPROACH How a section of code can be

modified to achieve a greater

purpose.

Q: Explain how the string can be sanitised to eliminate any

spaces.

A: By using a loop to iterate over each character in the string,

concatenating it to a new string if it is not a space.

TIME for programming

 9 Craig’n’Dave

Make stage
Problems are presented in a mixture of written English, flowcharts, pseudocode, Parsons problems and

output focused. Problems increase in difficulty indicated by the number of points. Students are encouraged to

use whitespace, indentation, sensible variable names, and subroutines from their very first program.

Students should be using comments throughout their programs to explain the purpose of subroutines,

variables, selections, and iterations. This will provide adequate problem decomposition making the explicit

design of an algorithm using pseudocode redundant.

Back in the history of Computer Science when IDEs did not exist, programs were written on tape or card and it

took a day to execute within a queue of other programs, it made sense to design algorithms to ensure they

were robust! This is no longer necessary to become a good programmer. The small bite-sized programs used

to teach programming are not large enough to warrant a design stage.

If students struggle to see solutions to the problems and therefore struggle with problem decomposition, they

could produce all their comments first and fill in the code required between the comments afterwards, much

like using pseudocode.

We suggest students choose the problems they want to solve, aiming for a total of 6 points in each objective.

This provides for student choice and differentiation. Students who find programming more difficult could

achieve 6 points from: 1 + 1 + 2 + 2-point problems. More able students could achieve 6 points from: 3 + 3-

point problems.

Evaluate stage
Objectives will frequently require students to create and use test tables to test their solutions to the

problems. This encourages good practice and teaches the importance of robust code.

Once students have finished an objective, they should alert their teacher. This is an opportunity to have a

conversation with the student and give oral feedback on the problems attempted. Immediate oral feedback

will be far more useful to the student than written feedback.

See overleaf for a framework for feedback conversations.

TIME for programming

 10 Craig’n’Dave

In oral feedback conversations, consider with the student:

Comprehension

To what extent does the student understand the code they have written?

• Review the investigate slides in their workbook.

• Ask questions about lines of code they have written to solve problems, getting them to explain how and
why their algorithms work.

Maintainability

To what extent and how consistently has the student used best practices in creating readable code?

• The use of comments, subroutines, sensible identifier names and whitespace.

• Using code structures that are easy to understand.

• The use of the most appropriate iteration: counter or condition (from objective 6).

Scalability

To what extent could subroutines be used in other programs later and how well would the program perform if

the data set it uses is increased significantly?

• Using subroutines and iterations instead of repeating blocks of code.

• Using self-contained subroutines with local variables and functions that return values.

• Using arrays and lists instead of multiple variables (from objective 8).

Robustness

To what extent can the program easily crash?

• Using validation (from objective 7).

• Using exception handling (from objective 9).

Approach

To what extent is the code the best algorithm for solving the problem?

• Creating time efficient algorithms (minimising the CPU cycles).

• Creating space efficient algorithms (minimising the use of memory) including using global variables only
when it makes sense to do so.

• Alternative algorithms may also be considered even though they do not gain any significant advantage
to appreciate the different approaches programmers might take and why.

TIME for programming

 11 Craig’n’Dave

OVERVIEW SCHEME OF LEARNING

 Objective Content Try/Investigate

programs

Make 1-point

problems

Make 2-point

problems

Make 3-point

problems

1 Learn how

to write

structured

programs

Functions

Parameters

Variables

Constants

Concatenation

Hello World

Discount

Flow rate

Square number

Dice face 5

Temperature

converter

Characters

Fish tank

volume

Microscopy

Carpet cost

Energy bill

calculator

Circle

properties

Ball pit

2 Learn how

to use

selection

If

Else

Switch

Check age

Valid month

Key Stage

Sample rate

Driving test

Max

States of

water

Career quote

Currency

converter

Nitrate

Exam grade

Periodic table

Day format

3 Learn how

to use

number

data types

Integers &

decimals

Casting

Random

Output

formatting

Mod

Div

VAT

Roll Dice

Odd or even

Operators

Save the

change

Polyhedral

dice

Clamp

Leap year

Hours in a day

Dice game

Divisible

Dogs life

Electric car

4 Learn how

to use

string data

types

String

manipulation

functions

Uppercase

Length of name

Wolf in the

forest

Find string

Replace string

Tweet

Initial &

surname

Inventory

Airline ticket

Teacher code

Valid address

Name

separator

Naming

conventions

ASCII to

EBCDIC

TIME for programming

 12 Craig’n’Dave

5 Learn how

to use

counter-

controlled

iterations

For

Foreach in

Step

Repeating code

Letters in string

Countdown

Times table

Factorial

Ten green

bottles

ASCII art

FizzBuzz

Scrabble

Passcode

Cassini

Prime number

6 Learn how

to use

condition-

controlled

iterations

While

Do

Roll a six

LCD

Model virus

Infinite loops

Denominator

Compound

interest

Car value

Discount

counter

Lottery

Cashpoint

Square root

Denary to

binary

Happy

numbers

Predator-prey

7 Learn how

to handle

user inputs

Input

Sanitisation &

validation

Menu choice

Validation

Dice roll

Metric-Imperial

Username

Automatic

feeder

Guess the

number

Conversion

utility

PIN

Adder

Password

Car park

Rock paper

scissors

8 Learn how

to use

arrays and

lists

Array

List

The quick

brown fox

Product

database

Pocket

Letter grid

Quote of the

day

RPG inventory

Notebook

Proc gen

Underground

Days of

Christmas

Maths test

Tanks

Strong

numbers

9 Learn how

to use

serial files

Read, Write

Try

Catch

Strip

Write a line of

data

Read a line of

data

Read multiple

lines

Perf Counters

Div zero

Cookie

Attributes

ROT13

Time sheet

Gamertag

Shopping list

Vending

machine

Amino acids

TIME for programming

 13 Craig’n’Dave

TRACKING PROGRESS

A spreadsheet checklist to track problems students have attempted is included. We recommend entering the

number of points achieved when a problem is solved so that students can see a running total of the points

they have accumulated. This can make for some healthy in-class competition too!

We do not track progress on the try and investigate tasks. These are simply for the students to learn and

experiment with the keywords introduced in the objective.

MORE FROM CRAIG’N’DAVE

Increasing number of challenges
Objective 10 will continue to be adapted to include more challenges for students to attempt. It is worth

downloading a new copy of Craig’n’Dave resources every year to ensure you have the most up-to-date

version.

Different languages
These resources are available for Python version 3.x and C# (Visual Studio 2015 onwards).

Visual Basic and Java will be available in the future.

Object-oriented programming
Use Craig’n’Dave Defold tutorials for Lua to teach object-oriented approaches with 2D games.

Event-driven & GUI programming
In the future Craig’n’Dave will create a Tkinter and Windows Forms extension to these resources.

